Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Access Microbiology ; 2023.
Article in English | EuropePMC | ID: covidwho-20234325

ABSTRACT

The SARS-CoV-2 pandemic demonstrated the importance of human coronaviruses and the need to develop materials to prevent the spread of emergent viruses. Here we describe that simple salt coating on a range of surfaces can degrade SARS-CoV-2.

2.
Build Environ ; 240: 110422, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2319773

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, the virus that causes the coronavirus disease (COVID)-19, is primarily transmitted through respiratory droplets which linger in enclosed spaces, often exacerbated by HVAC systems. Although research to improve HVAC handling of SARS-CoV-2 is progressing, currently installed HVAC systems cause problems because they recirculate air and use ineffective filters against virus. This paper details the process of developing a novel method of eliminating air pollutants and suspended pathogens in enclosed spaces using Photocatalytic Oxidation (PCO) technology. It has been previously employed to remove organic contaminants and compounds from air streams using the irradiation of titanium dioxide (TiO2) surfaces with ultraviolet (UV) lights causing the disintegration of organic compounds by reactions with oxygen (O) and hydroxyl radicals (OH). The outcome was two functional prototypes that demonstrate the operation of PCO-based air purification principle. These prototypes comprise a novel TiO2 coated fibre mop system, which provide very large surface area for UV irradiation. Four commercially accessible materials were used for the construction of the mop: Tampico, Brass, Coco, and Natural synthetic. Two types of UV lights were used: 365 nm (UVA) and 270 nm (UVC). A series of tests were conducted that proved the prototype's functionality and its efficiency in lowering volatile organic compounds (VOCs) and formaldehyde (HCHO). The results shown that a MopFan with rotary mop constructed with Coco fibres and utilising UVC light achieves the best VOC and HCHO purification performance. Within 2 h, this combination lowered HCHO by 50% and VOCs by 23% approximately.

3.
Access Microbiology ; 2023.
Article in English | EuropePMC | ID: covidwho-2293579

ABSTRACT

The SARS-CoV-2 pandemic demonstrated the importance of human coronaviruses and the need to develop materials to prevent the spread of emergent viruses. Here we describe that simple salt coating on a range of surfaces can degrade SARS-CoV-2.

4.
Building and Environment ; : 110018, 2023.
Article in English | ScienceDirect | ID: covidwho-2177026

ABSTRACT

With the increasing requirements for fresh air supply in buildings after the COVID-19 pandemic and the rising cost of energy, there has been an increased emphasis on natural ventilation techniques. While natural ventilation devices such as windcatchers can be a low-cost solution to remove indoor pollutants and improve indoor air quality, it is not as reliable as mechanical systems. Integration with low-energy cooling, heating or heat recovery technologies is necessary for operation in unfavourable outdoor conditions. In this research, a novel dual-channel windcatcher design consisting of a rotary wind scoop and a chimney was proposed to provide a fresh air supply irrespective of the wind direction. The dual-channel design allows for passive cooling, dehumidification and heat recovery technology integration to enhance its thermal performance. In this design, the positions of the supply and return duct are "fixed” or would not change under changing wind directions. An open wind tunnel and test room were employed to experimentally evaluate the ventilation performance of the proposed windcatcher prototype. A validated Computational Fluid Dynamic (CFD) model was developed to further evaluate the system's performance. The results confirmed that the system could supply sufficient fresh air and exhaust stale air under changing wind directions. The ventilation rate of the rotary scoop windcatcher was higher than that of a conventional 8-sided multidirectional windcatcher of the same size.

SELECTION OF CITATIONS
SEARCH DETAIL